17

OBJECTIVES

After studying this chapter,
the student should:

1. Understand the basic
ideas behind the variation
method, the perturbation
method, and the self-
consistent field method;

2. be able to solve simple
problems using the
variation and perturbation
methods;

3. understand the Aufbau
principle and its
relationship to the periodic
table of the elements;

4. be able to solve problems
related to electron
configurations and term
symbols of multielectron
atoms.

The Electronic States of Atoms.
II. Higher-Order Approximations for
Multielectron Atoms

PRINCIPAL FACTS AND IDEAS
1. The interelectron repulsions are included in approximation methods that
go beyond the zero-order orbital approximation.

2 The variation theorem allows calculation of upper bounds to ground-state
energies.

3. The perturbation method allows approximate calculations of energies and
wave functions for any states.

4. The self-consistent field method allows generation of the best possible
orbital wave function, leaving only the error due to neglect of electron
correlation.

5. The electronic structure of multielectron atoms can be described in terms
of the approximation schemes.

6. The structure of the periodic table of the elements can be understood in
terms of higher-order orbital approximations.
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The Variation Method and Its Application to the
Helium Atom

The zero-order orbital approximation that was employed in Chapter 16 neglects the
interelectron repulsions, with the result that each electron is independent of the other
electrons and occupies a hydrogenlike orbital in a product wave function. There are
three principal approximation schemes that go beyond this approximation. The first
scheme is the variational method, which is based on the variation theorem.

The Variation Theorem

The expectation value of the energy for a state corresponding to a wave function i/ is
given by Eq. (15.4-1):

_ Jy*HY dg
[y dg

where H is the correct Hamiltonian operator for the system and where the coordinates
of all of the particles of the system are abbreviated by ¢. The integration is to be done
over all values of all coordinates.

The variation theorem states: The expectation value of the energy calculated with any
function ¢ obeying the same boundary conditions as the correct system wave functions
cannot be lower than Eg, the correct ground-state energy eigenvalue of the system:

(E) (17.1-1)

* i |
__ %%%?% gE:g, (variation theorem) (17.1-2)
where ¢ is any function obeying the same boundary conditions as the correct wave
functions and depending on the same coordinates and where 4 must be the correct
Hamiltonian. The expectation value is equal to E,, if and only if the function ¢ is the
same function as the correct ground-state energy eigenfunction. The proof of the
theorem is assigned in Problem 17.10.

The Variation Method

The variation theorem suggests the variation method for finding an approximate
ground-state energy and wave function. First choose a family of possible approximate
wave functions. The second step is to calculate the expectation value of the energy
using the different members of the family of functions. This expectation value is called
the variational energy, and is usually denoted by W. Next, find the member of the
family that gives a lower (more negative) value of /¥ than any other member of the
family. Since /¥ can never be more negative than the correct ground-state energy, this
value of ¥ is a better approximation to the ground-state energy than is obtained from
any other member of the family of functions. The theorem does not guarantee that this
function is a better approximation to the correct wave function than any other member
of the family, but it is likely to be so. A typical application of the variation method uses
a family of functions that can be represented by a single formula containing one or more
variable parameters. Such as family of functions is called a variation function or a
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variation trial function. The variational energy # is calculated as a function of the
parameters, and the minimum value of W is found by the methods of calculus.

Application of the Variation Method to the Helium Atom’

Let us first use the zero-order orbital wave function of Eq. (16.3-28) as a variation trial
function. This is a single function, so no minimization can be done. It is normalized so
that the variational energy is

W =3 [ Vo) @) OB — ORI B i Do
x (1) ~ H)a(@)] de d

where H is the correct Hamiltonian operator, and where dq, and dg, indicate
integration over space and spin coordinates. The space orbital y,, is a hydrogenlike
Is orbital with Z = 2.

Since the helium-atom Hamiltonian operator is independent of the spin coordinates,
the spin factor is not operated on and the integral over the spin coordinates can be
factored from the space coordinate integration. Because of the normalization and
orthogonality of the spin functions, integration over the spin coordinates gives a factor
of 2, which cancels the normalizing constant 1/2. We could have omitted the spin factor
and the spin integration from the beginning. The result is

(17.1-3)

22
rujlllfmo(l)hf’ma(z)dq (17.1-4)

where we use the symbol dg to stand for d°r, d°r,. The entire Hamiltonian, not the
zero-order approx1mate Hamiltonian, must be used in Eq. (17.1-4).

The HHL(I) and HHL(Z) terms in the Hamiltonian operator give ground-state energy
cigenvalues for a hydrogenlike atom.

W= Jlffloo(l)*lflmu(z)* |:I:IHL(]) + IA{HL(z) +

Exercise 17.1

Show that the I:IH]_(I) term in Eq. (17.1-4) yields a contribution to # equal to £,(HL) and that the
Hyyp (2) term yields an equal contribution.

We now have
o2

W = 2E,(HL) + jwmo(l)*wwu(z)*( )wm(l)mtz) (17.1.5)

Evaluation of the integral in this equation is tedious and we given only the result:>

5
= 2By (HL) + g = 2E,(HL) — 2 (# iy (17.1-6)

8(4 04)
where (¥")yy 1) is the expectation value of the potential energy for the hydrogenlike
atom in its ground state. The variational energy is, using Eq. (16.2-12),

24’ 5Z¢&*

W=-=2 = —108.8¢eV +34.0eV = -74, 17.1-
2(4neoa)+8(41r50a) 8.8eV + e 74.8eV ( 7)

" Our treatment follows that in J. C. Davis, Jr., Advanced Physical Chemistry, The Ronald Press, New
York, 1965, pp. 2211f.

L. N. Levine, Quantum Chemistry, 4th ed., Prentice-Hall, Englewood Cliffs, N. J., 1991, pp. 230ff.
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where we have put in the value Z = 2 in the calculation of the numerical value. This
result is more positive than the correct value of —79.0eV, as the variation theorem
guaranteed. The error is approximately 4 eV, which is much better than the error of
—30¢eV obtained with the zero-order approximation. This improvement in the energy
value was not obtained by changing the wave function. Our wave function is still the
zero-order wave function obtained by complete neglect of the interelectron repulsion.
The improvement came from using the complete Hamiltonian operator in calculating
the variational energy. The zero-order energy was calculated using only the zero-order
Hamiltonian, and is not required to conform to the variation theorem.

We now use a variational trial function that represents a family of functions. We
replace the nuclear charge Z in the hydrogenlike 1s orbitals by a variable parameter, 7',
The modified 1s space orbital is

’ / L
Yigo = V100(Z) = 7 (;) gronie (17.1-8)
where a is the Bohr radius. The orbital depends on the value of Z’, and we label it with a
prime (). It is still normalized. The variation trial function is

0= 0(Z) = t/f’(l)t!/’(2)£[a(l)ﬁ(2) — B(1)e(2)] (17.1-9)

where we omit the subscripts on the orbital symbols. There is a physical motivation for
choosing this variation function. As an electron moves about in the atom, there is some
probability that the other electron will be somewhere between the first electron and the
nucleus, “shielding” the first electron somewhat from the full nuclear charge and
causing it to move as though the nucleus had a smaller charge. Therefore, a value of Z’
smaller than 2 should produce a better approximation than the value Z = 2 used to
obtain the value of —74.8eV in Eq. (17.1-7).

The wave function of Eq. (17.1-9) is substituted into Eq. (17.1-1) to calculate the
variational energy. The correct number of protons, Z = 2, not the value of Z’, must be
used in the Hamiltonian operator. The variational energy is

W= Jw’(l)*w'(z)*

7 2 2 7 2 2
e + f(Z) _ & e
dmegr, dmeyr,  4dmegry,

X [if(l) - j|1//(l)w’(2)a'q (17.1-10)

where " is the kinetic energy operator for one electron. The kinetic energy operator of
electron 1 operates only on the coordinates of electron 1, so that

J J V) Q) F W (W Q) dr, dPry = jw’(l)*a%“(l)w’md%l
= Z%(Ay), = —Z"E,(H)

(17.1-11)

where (Ay),, is the expectation value of the kinetic energy of the hydrogen (not
hydrogenlike) atom in the s state, and where we have used the fact that the expectation
value of the kinetic energy equals the negative of the total energy (see Section 16.2). We
have used the fact that the integral over the coordinates of particle 2 can be factored out,
and the assumption that the orbital /'(2) is normalized so that this integral equals unity.
The factor Z2 comes from the fact that the orbital (1) is the 1s orbital for an effective
nuclear charge equal to Z'e.
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The second term in the Hamiltonian operator in Eq. (17.1-10) gives

Contribution to W = Jw (H)*y' (2)* w (Y'(2)dg
=ZZ (Vs = ZZZ El(H)

(17.1-12)

where (¥7)y; is the expectation value of the potential energy of a hydrogen (not
hydrogenlike) atom in the 1s state. We have a factor of Z from the original factor Z in
the Hamiltonian, and a factor of Z’ from use of the ls orbital that corresponds to a
nuclear charge of Z’'e. The final equality comes from Eq. (16.2-27).

Exercise 17.2
Show that Eq. (17.1-12) is correct.

The next two terms in the Hamiltonian operator in Eq. (17.1-10) are just like the first
two, except that the roles of particles 1 and 2 are interchanged. After the integrations are
done, this interchange makes no difference, and these two terms give contributions
equal to those of the first two terms. The last term is the same as in Eq. (17.1-6) except
that the orbitals correspond to the nuclear charge of Z'e instead of Ze, so that its
contribution is

jw’(l)*wz)*( )w<1)¢(2)dq——52' (8 (17.1-13)

The final result is
W= El(H)( z’%«azz’-%z’) (17.1-14)

The variational energy is a function of a parameter, because our variation function was a
family of functions expressed by a formula with a parameter.

Exercise 17.3
Verify eq. (17.1-14).

We find the minimum value of W by differentiating with respect to the variable
parameter Z’ and setting this derivative equal to zero:

- E,(H)(—4z’ +47 - 2)

This equation is satisfied by

; 5

Z'=2Z T (17.1-15)
For Z =2, Z'=27/16 = 1.6875. Our optimized helium atom wave function corre-
sponds to a shielding of the nucleus so that an electron moves as though there were an
effective nuclear charge of 1.6875 protons instead of 2 protons. This is equivalent to
saying that one electron has a 31.25% probability of being between the nucleus and the
other electron. This electron density acts as though it were located at the nucleus, since
a theorem of electrostatics asserts that a spherically symmetric distribution of charge

St e T
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Figure 17.1. Zero-Order and Variation-
ally Obtained Orbitals for the Ground
State of the Helium Atom. This
diagram shows how the two orbitals
compare, with the effect of shielding
making the variationally obtained orbital
extend farther from the nucleus.

produces an electric field outside of the charge distribution exactly like that of a point
charge of the same size as the total distributed charge. Figure 17.1 shows the zero-order
ls orbital (with Z=2) and the variational orbital we have just obtained, with
Z' = 1.6875. The variable on the horizontal axis is the distance from the nucleus
divided by the Bohr radius a.

The minimum value of W is

L ’ 2 i
W = (~13.60V)[~2(1.6875)" + 4(2)(1.6875) — 7 (1.6875)] (17.1-16)

=—77.5eV

This value differs from the experimental value of —79.0eV by 1.5eV, an error of 2%,
corresponding to 145 kJmol ~ ', Our result is still not accurate enough for quantitative
chemical purposes. More accurate values can be obtained by choosing more compli-
cated variation functions. Hylleraas used the variation function®

@ = Ce~Z"Mlag=2'nla(] 4 pr,) (17.1-17)

This is not an orbital wave function because of the dependence of the final factor on r ,,
the distance between the electrons. This function gave a variational energy equal to
—78.7eV with a value of Z” equal to 1.849 and a value of b equal to 0.364. This energy
is in error by 0.3 eV, or about 0.4%. More elaborate variational functions have been
used, and have given excellent agreement with experiment.’

The presence of the factor (1 + br|,) introduces a dependence on the interelectron
distance. In a one-term orbital wave function, the probability density of each electron is
independent of the position of any other electrons as in Eq. (16.3-24), and there is no
electron correlation. The wave function of Eq. (17.1-17) gives a larger probability
density for larger separations of the electrons. This inclusion of explicit dependence on
interelectron distance is called dynamical electron correlation. An antisymmetrized
orbital wave function can also exhibit correlation if it has an antisymmetric space
factor like the triplet wave functions of Eq. (16.3-38) or Eq. (16.3-39), since an
antisymmetrized space factor vanishes if two electrons are at the same location and has
a small magnitude if they are near to each other. This effect is called statistical
correlation.

Exercise 17.4
Consider the antisymmetrized orbital wave function

¥ = ClY (DY2(2) = ¥ ()Y, (2)]

where i, and y, are any two different space orbitals. Show that the wave function vanishes if
both electrons are at the same location.

3E. A. Hylleraas, Z. Physik, 65, 209 (1930).
*T. Koga, J Chem. Phys., 94, 5530 (1991),
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¥ .2 The Perturbation Method and Its Application to the
Helium Atom

This method is the second of the three most commonly used approximation schemes. It
is applied to a problem in which the Hamiltonian operator can be separated into two
terms.

H=H9+ (17.2-1)
such that A gives a Schrodinger equation that can be solved:
HOPO = FOPO (17.2-2)

This equation is called the unperturbed equation or the zero-order equation. The
wave function ¥'” and the energy eigenvalue E® are called the zero-order wave
function or the unperturbed wave function and rthe zero-order energy eigenvalue or
the unperturbed energy eigenvalue. The term A in the Hamiltonian operator is called
the perturbation. The best results are obtained if the perturbation term is small
compared to other terms in the Hamiltonian operator.

For the helium atom, H® is the same as the zero-order Hamiltonian in Chapter 16,
and H represents the interelectron repulsion energy. This energy in a helium atom is
not small compared with the total energy, but we proceed. We first construct a new
Hamiltonian operator in which the perturbation terms is multiplied by a fictitious
parameter, :

H=HO 4,/ (17.2-3)
The new Schrddinger equation is
HAYA) = E)¥(A) (17.2-4)

where the energy eigenvalue and the energy eigenfunction now depend on /. It seems at
first that we are further complicating an already intractable problem by introducing a
new independent variable. However, we will express energies and wave functions as
power series in A, and will sometimes obtain useful information by using only a few
terms in the series.

Consider a particular energy eigenfunction ‘¥, and its energy eigenvalue £, assumed
to be nondegenerate. We assume that the energy eigenvalues and energy eigenfunctions
can be represented by a power series in A

E,=EQ +EMI+E@2 +... (17.2:5)
¥, =PO L9 @@)2 ... (17.2-6)

We use superscripts on the coefficients instead of subscripts because we already have
subscripts on our eigenvalues and eigenfunctions. The idea of the perturbation method
is to obtain only a few coefficients (often just two) in Egs. (17.2-5) and (17.2-6) and to
hope that a partial sum containing these terms gives a useful approximation to the entire
series when we let A = 1. Figure 17.2 shows schematically a typical energy eigenvalue
as a function of 4 and as represented by the first two partial sums of the series for values
of A between zero and unity.
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/Approxirnate energy given by
EO) 4 £(1) first-order correction
— EO) + AE(M
[Fflcorrect)
Correct energy
of real system
E©)
0 f =

A —

Figure 17.2. An Energy Eigenvalue as a Function of / for a Hypothetical System. This
diagram shows how the fictitious parameter A is used in the perturbation method. Only the value
A =1 has physical meaning, corresponding to the actual system. 2 = 0 corresponds to a soluble
problem with part of the Hamiltonian operator omitted (the zero-order problem).

Appendix G contains a derivation of the formula for the first-order correction to the
energy, EY". The result contains only the zero-order wave function:

(17.2-7)

We now apply first-order perturbation to the ground state of the helium atom, for which

AO = By (1) + Ay 2) (17.2-8)
g (17.2-9)
"~ dnegry, ’
The zero-order ground-state energy EES);s is given by Eq. (16.3-12) and ‘P(ﬁ’” is given by
Eq. (16.3-28). Integration over the spin coordinates in Eq. (17.2-7) yields
o2
B = [Vao Vi@ (e W@ Pri P, (17210

This result is the same as the integral in Eq. (17.1-5), so that our perturbation method
result to first order is the same as the result we obtained with the variation method using
the unmodified zero-order wave function as our variation function;

£

Isls

+EY = -108.8eV +34.0eV = —74.8eV (17.2-11)

lsls

The first-order correction to the wave function and the second-order correction to the
energy eigenvalue are more complicated than the first-order correction to the energy
eigenvalue, and we do not discuss them, No exact calculation of the second-order
correction to the energy of the helium atom has been made, but a calculation made by a
combination of the perturbation and variation methods gives an accurate upper bound:”

E® = _43ev (172-12)

Isls

*C. W. Scherr and R. E. Knight, Rev. Mod. Phys., 35, 436 (1963).
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so that the second-order value of the energy is —79.1eV, within 0.1eV of the
experimental value, —79.0eV. Since the perturbation method is different from the
variation method, the second-order energy can be lower than the correct energy.
Approximate calculations through thirteenth order have been made, and have given
values that agree with experiment nearly as well as the best results of the variation
method.®

The Self-Consistent Field Method

The third general approximation method is the self-consistent field method (abbre-
viated SCF) introduced in 1928 by Hartree.” The goal of this method is similar to that
of the variation method in that it seeks to optimize a wave function. It differs in two
ways: first, the search is not restricted to any particular family of functions; second, it
deals only with orbital wave functions. It allows the form of the orbital functions to be
varied, and is capable of finding the best possible orbital approximation. The SCF
method is extensively used in modern quantum chemistry. We do not discuss this
method in detail, but illustrate its use by applying it to the ground state of the helium
atom. The ground state of helium is a singlet state, and the antisymmetrization is in the
spin factor of the wave function. We can proceed with the space factor of the wave
function, omitting the spin factor, since the Hamiltonian contains no spin dependence.
The zero-order orbitals satisfied Eqs. (16.3-10) and (16.3-11), which omit the
potential energy of electron—electron repulsion. We add a correction term to Eq.
(16.3-10) to represent this potential energy. If electron 2 were fixed at location r;.

——V2

nb () =E,(1) (17.3-1

where r|, is the distance between the fixed position of electron 2 and the variable
position of electron | and where E| is a new orbital energy. If electron 2 is not ar a fixed
position, but occupies the normalized orbital y/,(2), then its probability of being found
in the volume element d°r, is

(Probability) = ¥,(2)*,(2) d’r; = Y, (2)* dr, (17.3-2)

We now replace the electron—electron repulsion term in the Hamiltonian of Eq. (17.3-1)
by a weighted average over all positions of electron 2, obtaining

0+

This is an integrodifferential equation, since it has both derivatives and an integral in
it. After the integration, the integral term depends only on the coordinates of electron 1,
so that the equation has a solution if the orbital for electron 2 is a known function.
However, at this point both (1) and ¥,(2) are unknown functions (both are i,
function if we are discussing the ground state),

The integrodifferential equation is solved by iteration (successive approximations).
The first step is to replace the orbital under the integral by the zero-order function or

il’2:!"‘5’1(1) =E (1) (17.3-3)

®C. W. Scherr and R. E. Knight, loc. cit. (Note 5).
"D.R. Hartree, Proc. Cambridge Phil. Soc., 24, 89, 111, 426 (1928).
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The Slater-type orbitals are named
after the same John C. Slater after
whom the Slater determinants are
named.

some other known function. The u‘/“(l) orbital that results from solving this equation is
called the first-order solution lj/“ (1). The equatlon that it obeys is

w"’(l)— w‘”( )+U W@ }/x‘”— 1V ()
(17.3-4)

where Eg? is a new approximation to the orbital energy. It is found that the integral in
this equation depends only on |, not on 8, and ¢,, so the 6, and ¢, dependence can be
separated from the r| dependence. It is ordinarily not poss1ble to solve Eq. (17.3-4)
analytically, but an accurate numerical representation of I,UI (12 can be obtained.

The next iteration (repetition) is carried out by replacing gb 0 ) under the integral
sign by 1/1 )(2) and denoting the new unknown function by t,l/l & 1) This equation is
solved, and the resulting solution is used under the integral for the next iteration, and so
forth. The equation for the jth iteration is

#? - Ze: e* B ;
~ VT T VD + [ J T Vi@ d3r2]¢g;’(1) EDyP 1)

(17.3-3)

Successive approximations converge to the best possible orbital approximation. When
additional iterations produce only negligible changes in the orbital function and the
energy, we say that the integral term provides a self-consistent contribution to the force
on electron 1, or a self-consistent field. At this point, the iteration is stopped and we
assume that we are close to the best possible orbitals.

In the SCF method, the expectation value of the energy is not the sum of the orbital
energies, because the potential energy of electron—electron repulsion has been included
in Eq. (17.3-3) for each electron. Since both orbitals are obtained from this equation,
the sum of the two orbital energies includes the interelectron repulsion energy twice.
We correct for this double inclusion by subtracting the expectation value of the
interelectron repulsion energy from the sum of the orbital energies. If n iterations
have been carried out, the expectation value of the energy is

E(atom =2E(”)—J WP PP dPr, &,
(atom) = 2577 - | WP Q)P Q7

= 25{1:) = Jis1

The integral J is called a Coulomb integral because it represents at approximate
expectation value of a Coulomb (electrostatic) repulsion energy between two electrons.

Roothaan modified the Hartree-Fock method by representing the orbitals by linear
combmatlons of functions similar to Eq. (15.2-13) instead of by numerical representa-
tions.® Clementi and Roetti expressed the unknown orbitals as a linear combination of
Slater-type orbitals (STOs). Each Slater-type orbital is a product of  raised to some
power, an exponential factor, and the correct spherical harmonic angular functions.
Using this expression instead of a numerical representation to evaluate the integrals in
the self-consistent-field method, they obtained an energy for the ground state of the
helium atom equal to —77.9 eV’

The self-consistent field method converges to the best orbital wave function, but it
does not include any dynamical electron correlation. The difference between the best

¥C. €. . Roothaan, Rev. Mod. Phys., 23, 69 (1951).
*E. Clementi and C. Roetti, Ar. Data Nucl. Data Tables, 14, 177 (1974).
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energy calculated with an orbital wave function and the correct nonrelativistic energy is
called the correlation energy or the correlation error. The 1.1eV error of Clementi
and Roetti is presumably an approximation to the correlation error. The “configuration
interaction” method eliminates part of the correlation error by constructing a wave
function that is a sum of terms, each of which corresponds to a different electron
configuration. We discuss this method briefly later in this chapter and in the next
chapter.

Excited States of the Helium Atom

Excited states of atoms are generally harder to treat than ground states. The variation
theorem applies only to ground states, so it cannot be used for excited states in its
original form. There is an extended variation theorem, which states that the calculated
variational energy will be no lower than the correct energy of the first excited state if the
variation trial function is orthogonal to the correct ground-state energy eigenfunction. It
will be no lower than the energy of the second excited state if the variation trial function
is orthogonal to both the ground state and the first excited state, etc. 19 Unfortunately, the
correct ground-state energy eigenfunction is not generally known, so that a family of
functions exactly orthogonal to it cannot be chosen. Some calculations have been made
in which a family of functions is chosen that is orthogonal to an approximate ground-
state variation function. This family of functions might be nearly orthogonal to the
correct ground-state function and the minimum variational energy from this family
might be a good approximation to the energy of the first excited state. In other cases,
even if the ground-state wave function is not known, some known property, such as
being a spherically symmetric function, might permit construction of a trial function
that is exactly orthogonal to it.

Degenerate Perturbation Theory

The perturbation method as described earlier in this chapter does not apply to a zero-
order state that has the same energy as other zero-order states of the system (the
degenerate case). For example, the zero-order orbital energies of the 2s and 2p
hydrogenlike orbitals are all equal, to that all of the zero-order states of the (1s)(2s)
and (1s)(2p) helium configurations have the same energy. A version of the perturbation
method has been developed to handle the degenerate case. We will describe this method
only briefly and present some results for the first excited states of the helium atom."’

There is no guarantee that the wave functions that we first obtain with the zero-order
solution are in correspondence with the correct wave functions in the degenerate case. [f
not, the smooth dependence on the parameter 4 depicted in Figure 17.2 will not occur.
The first task of the degenerate perturbation method is to find the correct zero-order
wave functions, the ones that are in one-to-one correspondence with the exact wave
functions. As the fictitious parameter A is increased from a value of zero to a value of
unity, each correct zero-order function smoothly turns into one of the exact functions

19 Levine, op. cit., pp. 193ff (Note 2).
"' Levine, op. cit., pp. 241ff (Note 2).
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without getting mixed up with other functions. We express the correct zero-order wave
functions as linear combinations of the degenerate “initial” zero-order wave functions:

g
) = El aJE> (17.4-1)
In order to find the ¢,; coefficients that define the correct zero-order functions, one must
solve a set of homogeneous linear simultaneous equations that are somewhat similar to
a set of equations described in Appendix H. Every equation of such a set consists only
of terms each of which is proportional to one of the coefficients to be found. These
equations are “trivially” satisfied if all of the coefficients equal zero. An equation that
must be satisfied for a nontrivial solution of these equations to exist is called a secular
equation.'? Solution of the secular equation gives the first-order corrections to the
energies as well as allowing solution of the equations for the ¢,; coefficients for each
correct zero-order function. It turns out that the wave functions of Eq. (16.3-38) are the
correct zero-order functions for the (1s5)(2s) configuration, and three sets of similar
functions are the correct zero-order functions for the (1s)(2p) configuration.

Figure 17.3 shows the results of calculations to first order and to third orders for the
energies of the four levels that result from the (1s)(2s) and the (15)(2p) configurations. '’
We observe the following facts: (1) Each triplet state has a lower energy than the
corresponding singlet state. (2) The (15)(2s) configuration gives states of lower energy
than the (1s)(2p) configuration. That is, the orbital energies of the 2p subshell are higher
than the orbital energies of the 2s subshell. The same behavior is found by experiment
generally to be true for atoms with more than two electrons, and it is also found in
higher shells that the orbital energies of a d subshell lie higher than those of the orbital
energies of the p subshell in the same shell, etc.

It is possible to explain the difference in the subshell energies on the basis of
shielding. An electron in the 1s orbital of a ground-state helium atom moves as though
the nuclear charge were reduced, due to the shielding of the positive nuclear charge by
the negative charge of the other electron. Electrons in other shells are similarly shielded
by other electrons that are present. An electron in a 2s orbital spends more time close to
the nucleus than one in a 2p orbital, as shown in the radial distribution functions of
Figure 16.13b. An electron in a 2s orbital will experience less shielding and its energy
will be lower than one in a 2p orbital, in agreement with the results shown in Figure
17.3.

It is possible to explain the difference in the energies of the singlet and triplet states
on the basis of statistical correlation. The singlet state wave functions have symmetric
space factors, since the spin factors are antisymmetric. Statistical correlation is not
found in symmetric space factors. In the triplet state wave functions, the spin factor is
symmetric, so the space factor is antisymmetric, giving statistical correlation, as in
Exercise 17.4. The electrons have lower probability of being found close together than
of being far apart when the system is in a triplet state. Since close proximity of two
electrons corresponds to higher potential energy, a triplet state has a lower energy than a
singlet state with the same space orbitals. We will use these explanations involving
shielding and statistical correlation again in discussing multi-electron atoms, although
this analysis is oversimplified. It also is found that the antisymmetric space factor
corresponds to lower probability that the electrons will be far apart, as well as to a lower

"2 Levine, op. cit., pp. 238ff (Note 2).
13 Levine, op. cit., pp. 247{F (Note 2).
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Figure 17.3. Approximate Energies of Helium Excited States. These excited state are the
same as those found in perturbation theory. It is assumed that perturbation theory is capable of
finding all of the actual states, even if the correct energies cannot be calculated exactly.

probability that they will be close together. There is also a higher probability that the
electrons will be found close to the nucleus, and this fact may be a controlling factor.'*

Exercise 17.5

Sketch a qualitative energy level diagram for the excited states of the (1s)(3s), (1s)(3p), and
(I5)(3d) configurations for the helium atom.

The self-consistent-field method must also be modified in order to treat excited states
of the helium atom, because two different space orbitals can be involved. In this case
two simultaneous integrodifferential equations must be solved by iteration. Further-
more, an antisymmetrized wave function requires two terms in the space factor of the
wave function. The original self-consistent-field method of Hartree did not provide for
antisymmetrization, The method was modified by Fock'® to include antisymmetriza-
tion.

 Levine, op. cit., pp. 303 (Note 2).
3V Fock, Zf Phys., 61, 126 (1930).
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17.5

Atoms with More Than Two Electrons

The discussion of other atoms is similar to that of helium. In zero order, electron—
electron repulsions are neglected, and in higher-order calculations these repulsions are
treated with the same approximation methods as in the helium atom.

Higher-Order Approximations for the Lithium Atom

The zero-order wave function for the ground state of the lithium atom was written in
Section 16.4. An application of the variation method to the lithium atom ground state
uses an orbital wave function containing hydrogenlike orbitals with variable orbital
exponents (variable effective nuclear charges) similar to that used with helium except
that different effective nuclear charges are used in the 1s and 2s orbitals. The minimum
in the variational energy, —201.2 eV, is found to occur with effective nuclear charges of
2.686 protons for the 1s orbitals and 1.776 protons for the 2s orbital.'® This variational
energy differs from the correct value of —203.5eV by 1%. The difference in the two
effective nuclear charges corresponds to the fact that an electron occupying a 2s orbital
is on the average farther from the nucleus than an electron occupying a 1s orbital, so
that there is a larger probability that other electrons are found between it and the
nucleus than is the case with a ls electron. The effective charge for the 2s orbital
corresponds to 1.224 electrons being found between the nucleus and the 2s electron,
while a 1s electron appears to have 0.314 electron between itself and the nucleus.

The effective nuclear charge seen by the 1s electrons is nearly the same as would be
seen by the ls electrons in a heliumlike atom with three protons in the nucleus, since
the minimum in the variational energy of Eq. (17.1-14) occurs at Z’' = 2.6875 if Z = 3.
A ls electron in a lithium atom is shielded primarily by the other 1s electron, and sees
almost no shielding due to the 2s electron. Since the 2s electron on the average is found
farther away from the nucleus than the 1s electron, this result is plausible,

*Exercise 17.6
a. Find the value of () for an electron in a hydrogenlike 1s orbital with Z = 2.686.
b. Find the value of (r) for an electron in a hydrogenlike 2s orbital with Z = 1.776.

In further variational calculations, the 2p orbital is found to be higher in energy than the
25 orbitals, so that the ground configuration is (15)*(2s), not (15)*(2p). The 2p electron
is more effectively screened from the nuclear charge than is a 2s electron. However, an
electron in a 2p orbital is not on the average farther from the nucleus than one in a 2s
orbital for the same nuclear charge (see Problem 16.35). It is not just the average
distance from the nucleus, but the entire radial probability distribution that determines
the effectiveness of the shielding. The 2s orbital is nonzero for » = 0, while the 2p
orbitals vanish for » = 0, so an orbital in a 2s orbital has a greater probability of being
found close to the nucleus, where the shielding is least effective, than does an electron
in a 2p orbital. Figure 16.10b shows that the radial probability distribution for the 25
orbital has a “hump” close to the nucleus that the 2p orbital does not have. We say that
the 2s orbital is more “penetrating” toward the nucleus than are the 2p orbitals,

' Levine, op. cit., pp. 274fF (Note 2).
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The ionization potential can be used to obtain an estimate of the effective nuclear
charge for the outermost electron in an atom. The first ionization potential is defined as
the energy required to remove one electron from an isolated neutral atom. If the orbitals
for the other electrons are not changed much by the removal of one electron, the
ionization potential is nearly equal to the magnitude of the energy of the orbital
occupied by the outermost electron.'” In the case of lithium, we have already seen that
the effective charge seen by the ls electrons is nearly unaffected by the presence of the
2s electron, so this condition is fairly well met.

EXAMPLE 174

Find the effective nuclear charge seen by the 2s electron in lithium from the ionization
potential, which is 124 kcalmol™ !, Compare this value with the value of 1.776 obtained
with the variational method. :

Solution
The ionization potential in electronvolts is
(124000 calmol=)(4.184 Jcal ™)
96485J mol~!eV-!
The energy of the 2s orbital is given by Eq. (16.2-10) as
(17.6eV)Z"?
4

where Z' is the effective nuclear charge. Setting this energy equal to 5.38eV gives
Z' = 1.26, which is in only rough agreement with the value of 1.776 obtained by the
variational calculation.

(IP) = = 5.38¢eV

E2=

When the perturbation method is applied to the lithium atom, the first-order
correction to the ground-state energy is equal to 83.5 eV, resulting in an energy through
first order equal to —192.0eV. This value is considerably less accurate than the value
obtained by the simple variational calculation.'® The Hartree-Fock method is the most
successful of the three common approximation methods. A careful Hartree-Fock-
Roothaan calculation leads to a ground-state energy of —202.3 eV, differing from the
correct value by only 0.6%."? This error is presumably a good approximation to the
correlation error.

One way to include dynamical electron correlation in an orbital wave function is 1o
construct a wave function that is a linear combination of several Slater determinants
corresponding to different configurations, a method that is known as configuration
interaction, abbreviated Cl. For example, for the ground state of the lithium atom, one
could use

¥ =c¥igss + ¥ 100 + W inas + (17.5-1)

where ¢, ¢,, and ¢y, etc., are variable parameters and the s represent Slater-
determinant wave functions with the given configurations. The variational energy is
minimized with respect to these parameters. Although it is not obvious from inspection
of Eq. (17.5-1) that ¥ includes dynamical correlation, it does in fact depend on

"7 Levine, op. cit.,, p. 475 (Note 2).
'® Levine, op cir., p. 274fF (Note 2).
YE L. Pilar, Elementary Quantum Chemistry, McGraw-Hill, New York, 1968, p. 336.
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interelectron distances, a fact that we discuss briefly in the next chapter. Unfortunately,
the process converges slowly, so that many configurations must be used to get good
accuracy. Using large computers, atomic and molecular calculations have been
constructed with as many as a million configurations.

Atoms with More Than Three Electrons

The higher-order approximate treatment of the other atoms is similar to the helium and
lithium treatments. All three approximations schemes can be applied, but the most
accurate work has been done with the Hartree—Fock—Roothaan method and configura-
tion interaction. The optimum orbitals appear to be in one-to-one correspondence with
the hydrogenlike orbitals. Figure 17.4 shows approximate orbital energies in neutral
atoms, obtained by an approximation scheme called the Thomas—Fermi method. This
method gives orbital energies that generally agree with those from the Hartree—Fock
method. Notice that logarithmic scales are used in the figure. Several things are
apparent: First, the orbitals in the same shell but in different subshells have different
energies, with higher values of / corresponding to higher energies; second, all of the
orbitals in a given subshell have the same energy; third, the energies depend strongly on
the nuclear charge, with some pairs of curves crossing and recrossing as a function of

0.1

1.0

10

100 L ! I
1.0 10 100

Figure 17.4. Approximate Orbital Energies in Neutral Atoms. The axes in this diagram are
logarithmic. The order of occupation of subshells can only approximately be determined from this
diagram. From R. Latter, Phys. Rev., 99, 510 (1955).
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the nuclear charge. The energy differences between subshells in the same shell can be
ascribed to differences in shielding. An electron in an s orbital spends more time close
to the nucleus than an electron in a p orbital and is less effectively shielded from the
nucleus by other electrons, giving it a lower orbital energy. Similarly, an electron in a p
orbital is less effectively shielded than an electron in a d orbital, and so on. All of the
orbitals in a subshell have the same orbital energy because they all contain the same
radial factor.

Using Figure 17.4 or some equivalent source of orbital energies, it is now possible to
determine the ground-level configuration for any neutral atom, using the Aufbau
principle that was introduced in Chapter 16. This principle states that the ground-
state configuration is obtained by choosing the lowest-energy set of orbitals compatible
with Pauli exclusion. For the first 18 elements, the subshell energies lie in the increasing
order ls, 2s, 2p, 3s, 3p. For example, the subshell configuration of the ground state of
argon is (15)*(25)*(2p)°(35)2(3p)°. From Figure 174 we see that beyond atomic number
15, the 3d orbital energy is higher than that of the 4s. Therefore, elements 19
(potassium) and 20 (calcium) in their ground states have the 4s orbitals occupied in
preference to the 3 orbitals. Beyond atomic number 23, the figure shows the 4s energy
above the 3d energy. However, it is found experimentally that most of the transition
elements from scandium (element 23) through zinc (element 30) have two electrons
occupying the 4s spin orbitals in their ground levels, although chromium (element 24)
and copper (element 29) have only one 4s electron. Assuming the energies in the figure
to be essentially correct, it appears that other factors besides orbital energy, principally
the correlation energy, are important in determining the ground-level configuration.

The correct ground-level configuration for most elements can be obtained from the
scheme of Figure 17.5, which shows the “diagonal mnemonic device” or the
“diagonal rule.” To determine the order of orbitals for the Aufbau principle, one
follows the diagonal paths from upper right to lower left, moving top to bottom from
one diagonal to the next. The number of spin orbitals in each subshell is listed at the top
of the figure, so that one can tell when enough subshells have been chosen to be
occupied by the electrons of a given atom. The diagonal mnemonic device is equivalent
to the “n + I rule,” which states that subshells of a given value of n 4/ are occupied

Number of spin orbitals in subshell
2 6 10 14 18 22

6h
7h 7i

Figure 17.5. The Diagonal Mnemonic Device for Applying the Aufbau Principle to Neutral
Atoms. Following the arrows in the diagram gives the order of occupation of subshells in neutral
atoms. Exceptions are given in Table 17.1.
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before those of the next higher value of # + /, and that within a given value of n + /, the
subshells are occupied in the order of increasing .

EXAMPLE 17.2
Give the ground-level configuration of (a) Al, (b) Mn.

Solution

a, Al (13 electrons): (15)*(25)2(2p)°(35)*(3p)

b. Mn (25 electrons): (15)*(25)*(2p)°(35)*(3p)° (3d)° (4s)?

Configurations are often abbreviated by giving an inert gas configuration as part of the
configuration. The Mn configuration is sometimes abbreviated as [Ar](3d)*(4s), where
[Ar] stands for the ground-level configuration of argon.

*Exercise 17.7
Give the ground-level configuration of the elements: (a) S, (b) Ta, (c) Hg.

Table 17.1 lists the known exceptions to the diagonal rule through element 103,
Some of the prominent exceptions are Cr, Cu, Mo, Ag, and Au. In each of these cases,
there is d subshell having 5 or 10 electrons instead of having 4 or 9 electrons. These
exceptions to the rule apparently correspond to the fact that a half-filled or filled
subshell is more stable than otherwise expected, possibly because the orbital regions of
the real d orbitals are well separated from each other, allowing electrons to have a fairly

Table 17.1 Exceptions to the Diagonal
Mnemonic Rule

Atomic no. Symbol Ground configuration
24 Cr [Ar](3d)* (4s)!
29 Cu [Ar](3d)'°(45)"
41 Nb [Kr](4d)*(5s)"
42 Mo [Kr](4d)*(5s)'
44 Ru [Kr](4d)" (55)"
45 Rh [Kr](4d)®(5s)"
46 Pd [Kr](4d)’(5s)"
47 Ag (Kr](4d)"9(5s)"
64 Gd [Xel(d/) (5d)' (65)*
65 Tb [Xel(4/)*(5d)! (65)*
66 Dy [Xel(4/)’(5d)" (65)°
67 Ho [Xe)(4/)"°(5d)" (6s)*
68 Er (Xe)(4f )" (5d)' (65)*
78 Pt [Xel(4f) " (5d)° (6s)"
79 Au [Xe)(47)"(5d)"°(6s)"
90 Th [Rn)(6d)*(7s)"
91 Pa [Rn](5/)(6d)' (7s)*
92 U [Ral(5/)(6d)' (75)*
93 Np [Ra)(5/)*(6d)' (7s)?
94 Cm [Rn](57)7(6d)" (7s)?
103 Lr [Rn)(5/)"“(6d)" (75)
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low energy of repulsion when occupying these orbitals in preference to another choice
of orbitals. There has been some discussion about whether lanthanum and actinium are
also exceptions to the diagonal mnemonic rule. Lanthanum has sometimes been
assigned a 5d electron in the ground level, and actinium has been assigned a 6d
electron. However, from an analysis of spectroscopic observations, it appears that
lanthanum has a 4/ electron in its ground state and that actinium has a 5/ electron, as
predicted by the diagonal rule.?

The diagonal mnemonic rule does not necessarily apply to ions, since the shielding 1s
different for ions than for neutral atoms. For example, the iron atom has six 34 electrons
and two 4s electrons, in conformity with the diagonal rule. The Ni** ion, with the same
number of electrons, has eight 3d electrons and no 4s electrons. The correct electron
configuration for positive ions can usually be obtained by finding the configuration of
the neutral atom and then removing electrons from the outer shell instead of the
subshell to which the last electrons were added.

For those elements with partially filled subshells, the detailed configuration and the
values of the quantum numbers L and S of the ground level can be predicted, using rules
due to Hund. Hund’s first rule is: For the same value of L, the level with the largest
value of S has the lowest energy. Hund’s second rule is: For a given value of S, the
level with the largest value of L has the lowest energy. Hund’s second rule is applied
only after the first rule has been applied. These rules are quite reliable for ground levels,
but less reliable for other levels.”' There is also a third rule, which states that for
subshells that are more than half filled, higher values of J correspond to lower energies,
and that for subshells that are less than half filled, lower values of J correspond to lower
energies.

With several electrons, the operators for the squares of the total orbital and spin
angular momentum are complicated, since the angular momenta are vector sums. We
will not discuss them, but will work with the z components. The operators for the z
components are algebraic sums of the one-electron operators:

l.., 8=

1

1 i

™
M~

L= 5, (17.5-2)

i
i

The quantum numbers M, and M; are also algebraic sums:

: iz
Mp=3 m €17:5-3)
j=1

Z
My=% my (17.5-4)
i=1

For any given detailed configuration, the possible values of M; and Mg can be
determined by algebraic addition as was done in Chapter 16. The addition is simplified
by the fact that contributions to both M, and M; from filled subshells vanish. The
possible values of L and § and the Russell-Saunders term symbols can be found from
the fact that M, ranges from —L to +L, and that M ranges from —S and +S. The
ground-level term can then be determined from Hund’s rules.

20w, B. Jensen, J. Chem. Educ., 59, 635 (1982).
! Levine, op. cit., pp. 303ff (Note 2).
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Dmitri Mendeleev, 1834—1907, was
a Russian chemist who correlated
valence with atomic mass. Julius
Lothar Meyer, 1830—1895, was a
German chemist who correlated
atomic volume with atomic mass.

EXAMPLE 17.3

Using Hund’s first and second rules, find the ground-level term symbol for the nitrogen
atom.

Solution

The ground-level configuration is (15)*(25)*(2p)°. Applying Hund’s first rule, we seek the
largest value that S can have. The filled 1s and 25 subshells make no net contribution to
or 8, because the subshells are filled and their m, values add to zero. The three electrons in
the 2p subshell can have their spins parallel if they occupy different space orbitals, so that
the largest value of My is 4-3/2, and the smallest is —3/2. Therefore, the largest value of §
is 3/2, and this will be the ground-level value.

Since we are looking for values of M, we use the space orbitals that are eigenfunctions
of the I, operators, the Yap1s Wapos and Yy, ) orbitals. Each of these is occupied by one
electron, so M; =140 -1 =0, and the only value of L is zero. The term symbol is *S
(quartet S). There is no need to apply Hund’s second rule, since only one value of I, can
occur with the value of § that we found.

*Exercise 17.8
Find the ground-level term symbols for (a) Be, (b) B, (¢) C, (d) O, and (¢) F.

The explanation of Hund’s first rule is the same as the explanation for the fact that the
triplet levels were lower in energy than the singlet levels in helium, discussed in Chapter
16. The higher values of S correspond to more electrons occupying states of parallel
spins, which means that they occupy a larger number of space orbitals. Occupying
different orbitals lowers the probability that the electrons will be found close together.
thus lowering the potential energy.

The Periodic Table of the Elements

The periodic table was invented independently by Mendeleev and Meyer. Both noticed
that if the elements were listed in increasing order of atomic mass, there was a
repetition, or periodicity, of chemical and physical properties. For example, lithium.
sodium, potassium, rubidium, and cesium all form oxides with the formula M>0 and
chlorides with the formula MCl, while beryllium, magnesium, calcium, strontium. znd
barium all form oxides with the formula MO and chlorides with the formula MCl..
where we abbreviate the symbol for the metal with the letter M.

Inside the front cover of this book is a modern periodic table. The elements are lisied
in order of atomic number, instead of atomic mass, except that some elements are listed
separately at the bottom of the table. Elements in any given column exhibit similar
chemical properties. There are several ways of numbering the columns, and the two
most common ways are shown. One scheme, which is supposed to become the standard
scheme, is to number the 18 columns from 1 to 18. The other is to number the columns
IA through 8A and 1B through 8B, as indicated. Three columns are grouped together
as column 8B. This numbering corresponds closely to the numbering scheme used by
Mendeleev, although the A and B columns were not distinguished in his table, which
had only eight columns, with iron, cobalt and nickel together in one column. There is
also another numbering scheme in which some of the A and B designations are
interchanged. The elements in the columns labeled A are called representative
elements, and those in the columns labeled B are called transition elements or
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Figure 17.6. A Periodic Table of the Elements. This table is different from the periodic table inside the front cover in that all elements are listed in
order of atomic number. The inner transition elements are given their own columns in the body of the table, instead of being placed underneath the
body of the table.

transition metals. The two sets of 14 elements at the bottom of the chart are called
inner transition elements or inner transition metals. Figure 17.6 shows a perodic
table in which all elements are listed in order of increasing atomic number.

The elements following uranium (U, element 92) in the table do not occur in the
earth’s crust, but have been synthesized in nuclear reactors.”” The elements after
lawrencium, element 103, were given temporary names: element 104 was unmlquad-
rium, element 105 was unnilpentium, etc., based on the Latin version of the atomic
numbers. Some of these names have been replaced, although there has been disagree-
ment about what the names should be. The names of elements 104109 that have been
accepted by the International Union of Pure and Applied Chemistry are™

Atomic number Symbol Name
104 Rf Rutherfordium
105 Db Dubnium

106 Sg Seaborgium
107 Bh Bohrium

108 Hs Hassium

109 Mt Meitnerium

Chem. Eng. News, March 13, 1995, p. 35,
Chem. Eng. News, August 21, 1995, p. 4, IUPAC news release, August 30, 1997,
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Many elements were unknown at the time of Mendeleev. These elements included the
inert gases, most of the inner transition elements, and others scattered about the table,
such as scandium, gallium, and germanium. However, Mendeleev had sufficient
confidence in the periodicity principle that he left blank spaces in the table for
undiscovered elements. Mendeleev listed the elements in order of atomic mass, because
the concept of atomic number was unknown. There are cases in which a larger atomic
mass occurs before a small atomic mass (Ar and K, Co and Ni, Te and I). However,
Mendeleev had an incorrect value for the atomic mass of tellurium, he listed Fe, Co,
and Ni together in his column 8, and argon had not been discovered. He might have
been unaware of these reversals of order.

The form of the periodic table was first explained by Niels Bohr, who also introduced
the modern “long” form of the chart with 18 columns. The similarity of chemical
properties of the elements in a given column is due to the similarity of their electron
configurations in the outermost shell (the valence shell). For example, sodium and
potassium both easily lose one electron because sodium has only one electron in its
valence shell (the third shell) and potassium has only one electron in its valence shell
(the fourth shell). The eight columns of representative elements occur as two columns
on the left and six columns on the right, corresponding to the two spin orbitals of an s
subshell and the six spin orbitals of a p subshell. The transition elements occur in 10
columns, corresponding to the 10 spin orbitals of a  subshell, and the inner transitions
elements occur in 14 columns, corresponding to the 14 spin orbitals of an /* subshell.

The general chemical behavior of an element can be predicted from its first ionization
potential and its electron affinity. The ionization potential (also called ionization
energy) is the energy required to remove one electron. The electron affinity is the
energy required to remove the extra electron from a singly charged negative ion of the
element. It is therefore equal to the amount of energy given off in forming a negative
ion, and is positive if a gaseous atom spontaneously attracts an electron. Those with
relatively high ionization potential will also have relatively high electron affinities
(except for the inert gases). Those elements with relatively small values of the
ionization potential will tend to lose electrons when combining chemically. Those
elements with high electron affinities will tend to gain electrons when combining
chemically.

Figure 17.7 shows the first ionization potential of the elements as a function of
atomic number. The elements with the highest ionization potentials are the inert gases,
which have eight electrons in the valence shell (except for helium). A similar graph of
the electron affinity would show that the elements of column 7A, the halogens, have the
greatest electron affinity. In other words, if the halogen achieves the same configuration
as an inert gas by gaining an electron, it becomes relatively stable. The elements with
the lowest ionization potentials are the elements in column 1A, the alkali metals, which
have a single electron in the s subshell of the valence shell. It is relatively easy 1
remove an electron from an atom of an alkali metal, giving the inert gas configuration in
the shell just below the valence subshell.

Figure 17.7 shows several additional elements, such as beryllium, nitrogen, magne-
sium, phosphorus, zinc, and mercury, which have higher ionization potentials than their
immediate neighbors. All of these elements have ground-level configurations with all
subshells completely filled (beryllium, magnesium, zine, and mercury), or with all
subshells filled except for a half-filled valence subshell (nitrogen and phosphorus). We
conclude that not enly is a filled subshell relatively stable, but also that a half-filled
subshell is relatively stable. We have already mentioned this behavior in some
exceptions to the diagonal rule, such as chromium and copper.
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Figure 17.7. First lonization Potentials of the Elements. The trends in the table and their
relation to position in the periodic chart are understood in terms of electron configurations. Moving
from left to right in one row of the pericdic chart corresponds to increasing the number of protons in
the nucleus, holding the electrons more tightly, but without increasing the number of occupied shells.
Moving from top to bottom in the periodic chart corresponds to moving to shells farther from the
nucleus, lessening the attraction of the electrons to the nucleus, which is shielded by the electrons in
the inner shells.

By Hund’s first rule, a subshell that is half full or less than half full in the ground
level will have each electron occupying a different space orbital, in order to have
parallel spins, resulting in the state of maximum Ms. A half-filled subshell therefore has
one electron occupying each space orbital, and has the same electron charge distribution
as a full subshell except for having only half as much total charge. Unsold’s theorem
asserts that the charge distribution in a filled hydrogenlike subshell is spherically
symmetric (independent of 6 and ¢). This theorem also must hold for a half-filled
subshell.

Exercise 17.9
For hydrogenlike orbitals, show that

o I* + Wapol? + Wape

is independent of 8 and ¢, as asserted by Unsold’s theorem.

There are a number of additional chemical and physical properties, including atomic
size, melting temperature, and electronegativity, that can be correlated with electron
configuration and thus with position in the periodic table.

Summary of the Chapter

This chapter introduced three approximation schemes and discussed their application to
atoms with two or more electrons. The first approximation scheme was the variation
method, in which a variation trial function is chosen to minimize the approximate
ground-state energy. A simple orbital variation trial function was found to correspond to
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a reduced nuclear charge in the helium atom. This result was interpreted to mean that
each electron in a helium atom shields the other electron from the full charge of the
nucleus. A better approximation corresponds to introduction of electron correlation.
dependence of the wave function on the interelectronic distance.

The next approximation method discussed was the perturbation method. To apply
this method, the Hamiltonian must be written as 7% + &', where 4 represents a
Hamiltonian of a Schrédinger equation that can be solved. The term ' is called the
perturbation term. The perturbation term is arbitrarily multiplied by a fictitious
parameter /, so that 1 = 1 corresponds to the actual case. The method is based on
representations of the energy eigenvalues and energy eigenfunctions as power series in
4 and approximation of the series by partial sums. In the helium atom treatment the
interelectronic repulsive potential energy was treated as the perturbation term in the
Hamiltonian operator. The method gave useful results for excited states.

The third approximation scheme was the self-consistent-field method of Hartree and
Fock. In this method an optimum orbital wave function is sought without restricting the
search to a single family of functions. For the helium atom the interelectronic replusive
energy is represented by assuming the probability density for the second electron to be
given by an earlier approximate orbital and solving the resulting integrodifferential
equation by iteration.

In the orbital approximation, the energies of the orbitals in multielectron atoms
depend on the angular momentum quantum number as well as on the principal quantum
number, increasing as / increases. The ground state is identified by the Autbau
principle, choosing orbitals that give the lowest sum of the orbital energies consistent
with the Pauli exclusion principle.

Hund’s first rule is that the largest value of S corresponds to the lowest energy in a
configuration. The second rule is that for fixed value of S, the largest value of L, the
quantum number for the total orbital angular momentum, corresponds to the lowest
energy. The first rule correlates with the fact that the larger values of S correspond to
lower probability for small interelectron distances, lowering the potential energy.

The form of the periodic table is determined by electron configurations. Elements
with the same number of electrons in the outer (valence) shell have similar chemical
properties. For example, all of the inert gases have eight electrons in the outer shell,
corresponding to the stable configuration with fully occupied s and p subshells,

PROBLEMS

Problems for Section 17.1

I7.10. Prove the variational theorem. Assume that all of the
energy eigenfunctions and energy eigenvalues are known, and
write the variation function as a linear combination of the
energy eigenfunctions:

Substitute this expression into the formula for the variational
energy and use eigenfunction and orthogonality properties.

17.11. Calculate the variational energy of a particle in a one-
dimensional box of length a, with the following trial func-
tions:

*a. @(x) = Ax(a — x)

*b. o(x) = Ax¥(a? - x2)

€ () =48 — )
Calculate the percent error for each trial function.

17.12. Calculate the variational energy of a harmonic oscil-
lator using the trial function ¢(x) = 4/(b* + x%), where b is a
variable parameter. Minimize the energy and find the percent
error from the correct ground-state energy.




